# Mathematical Food for Thought

Serves a Daily Special and an All-You-Can-Eat Course in Problem Solving. Courtesy of me, Jeffrey Wang.

• ## Meta

The Algebra Of Lines? Topic: Linear Algebra. May 24th, 2006

Note: See MathWorld for any necessary definitions.

——————–

Problem: Let be a linearly independent set of vectors in a nonzero subspace of such that . Then it can be extended by adding some more vectors to form a basis of .

Solution: Take any vector such that is not a linear combination of (i.e. is not in the span of the original set of vectors). The existence of such a vector is guaranteed by the fact that the span is strictly contained within Since it is not a linear combination, the new set is still linearly independent. Furthermore, it has a greater span than the original set. If the new span is still strictly contained within , we may add another vector . Repeating this process allows us to keep increasing the span. But we also note that this process must terminate because a set of vectors that is linearly independent must span all of ; therefore, after adding some vector with we will have formed a basis of . QED.

——————–

Comment: This is actually a lemma that leads to one of the most basic nontrivial results in Linear Algebra, that every subspace of in fact has a basis. The idea is trivial in , for example, because a single vector is the basis for any line through the origin and two vectors are the basis for any plane through the origin. It is known that lines and planes through the origin (as well as and itself) are the only subspaces in .

——————–

Practice Problem: Any two bases of a subspace of have the same number of elements (this number is called the dimension of ).

### 3 Responses to “The Algebra Of Lines? Topic: Linear Algebra.”

1. Anonymous Says:

You must also specify that your original set of vectors {v_1, v_2, …, v_m} be linearly independent, because every basis is linearly independent.

2. 4d331 Says:

Linear Algebra? Oh no…